

2012

Student: Cornel Verster -
15673251

Study Leader: Thinus
Booysen

[ONLINE INTERFACE FOR A
PREPAID METER]
Report submitted in partial fulfilment of the requirements of the module

Project (E) 448 for the degree Baccalaureus in Engineering in the
Department of Electrical and Electronic Engineering at the University of
Stellenbosch

I

Acknowledgements

To my Lord and Saviour Jesus Christ, for His love, mercy and acceptance
throughout my life and to for the ability to complete this project.

To my parents for their love and support.

To Thinus Booysen for his motivation and support.

We would like to thank MTN and Trinity Telecommunications, who enabled

and supported this work with their technical and financial assistance.

II

Declaration
I, the undersigned, hereby declare that the work contained in this report is my own
original work unless indicated otherwise.

Signature …………………………………….

Date……………………………………………

III

Summaries
The remote monitoring and control of a prepaid electricity meter will prove
beneficial to users and distributors alike. Effective gathering and analyses of

data concerning electricity usage will help users to make better informed
decisions concerning use of appliances and devices that consume electricity.
This will allows users to save electricity and to monitor meters that are far

away

Being able to remotely control prepaid meters will also be beneficial for users

that are far from the meter. Instructions can be sent to the meter remotely
via the Internet. These instructions can upload credit to meters or perform

other functions such as tripping a meter‟s disconnecting device.

Originally, serial communication with the meter was attempted as a possible

solution. This did not work as the specification provided for the meter for
this project was inaccurate. Another approach had to be followed. An LED
sensor, which was tested and found to work accurately, was used to gather

usage data from the meter. A relay matrix was used to simulate key presses
on the meter keypad, and allowed a user to remotely send instructions to the

meter.

IV

Die afstand moniteering en beheer van „n voorafbetaal elektrisiteitsmeter sal
voordele inhou vir beide verbruikers sowel as verspruiders. Effektiewe

insameling en analise van data rakende elektrisiteitsverbruik sal verbruikers
help om beter ingeligte besluite te maak rakende gebruik van toerusting en
toestelle wat elektrisiteit verbruik. Dit sal verbruikers toelaat om elektrisiteit

te spaar asook hulle meters te monitor wat vêr weg is.

Om in staat te wees om voorafbetaal meters oor „n afstand te kan beheer sal

ook voordelig wees vir verbruikers wat ver weg is van die meter. Instruksies
kan oor afstand na die meter gestuur word via die Internet. Hierdie

instruksies kan krediet op meters laai of ander funksies uitvoer soos om „n
meter se ontkoppelingmeganisme te laat afskakel.

Aanvanklik is serie kommunikasie met die meter oorweeg as „n moontlike
oplossing. Dit het nie gewerk nie omdat die spesifikasie soos vir die meter
voorsien, onakkuraat was. „n Ander benadering moes gevolg word. „n LED

sensor, wat getoets was en bevind om akkuraat te werk, is gebruik om
gebruiksdata van die meter te versamel. „n Herlei matriks is gerbuik om

sleuteldrukke op die meter se sleutelbord na te boots en het die verbruiker
toegelaat om instruksies oor afstand na die meter te stuur.

V

Contents
Acknowledgements .. I

Declaration .. II

Summaries ... III

Table of Symbols .. VII

List of Figures .. VIII

1. Introduction ... 1

1.1 Project Background ... 1

1.2 Literature Study ... 1

1.3 Aim .. 2

1.3.1 Requirements .. 2

1.3.2 Objectives .. 2

1.4 Approach ... 2

2. System Layout ... 3

2.1 Key Components .. 3

2.1.1 Itron ACE9000 Taurus ISP Electricity meter .. 3

2.1.2 Trintel Online Platform ... 5

2.1.3 Sierra Wireless Airlink GL6100 Modem .. 9

2.2 Solution Components ... 9

2.2.1 The Microcontroller Board – Arduino Mega 2560 .. 9

2.2.2 Gathering data from the meter – The LED Sensor .. 11

2.2.3 Communication with the SMART platform .. 13

2.2.4 Writing Tokens to the Meter - The Relay Matrix .. 23

2.2.5 Full System Diagram .. 27

3. Test Unit and Results ... 28

3.1 Results ... 29

4. Dead Ends .. 31

4.1 Hardware for serial communication with the meter ... 31

4.1.1 Testing the opto-couplers .. 33

4.2 Serial communication with the meter ... 34

5. Conclusion and Recommendation .. 40

References .. 41

Appendix A: Planning Schedule.. 43

Appendix B: Project Specification .. 45

VI

Appendix C: Outcomes Compliance .. 46

Appendix D: ASCII Table ... 48

Appendix E: Full System Diagram ... 49

Appendix F: Meter Virtual Memory Configuration ... 50

VII

Table of Symbols

I/O Input / Output

M2M Machine to Machine

TCP/IP Transmission Control Protocol / Internet Protocol

STS Standard Transfer Specification

UART Universally Asynchronous Receiver / Transmitter

LDR Light Detecting Resistor

LCD Liquid Crystal Display

LED Light Emitting Diode

SRAM Static Random Access Memory

EEPROM
Electronically Erasable Programmable Read Only

Memory

TTL Transistor – Transistor Logic

RS-232 Recommended Standard 232

USB Universal Serial Bus

PC Personal Computer

SIM Subscriber Identity Module

VIII

List of Figures
Figure 1 - System Diagram .. 3

Figure 2 - Itron ACE9000 Taurus ISP Prepaid Electricity Meter 4

Figure 3 - Modem Hierarchy Diagram .. 6

Figure 4 - AirVantage Portal device listing .. 6

Figure 5 - AirVantage device data .. 7

Figure 7 – AirVantage Asset data ... 7

Figure 8 - SMART platform data cycle .. 8

Figure 9 - SMART dashboard ... 8

Figure 10 – Arduino Mega 2560 ... 10

Figure 11 - Resistive Divider [15] ... 11

Figure 12 - LED Sensor Voltage Profile ... 12

Figure 13 - LED Sensor check ... 13

Figure 14 - MAX2233 chip implementation .. 14

Figure 15 - Data Writing Cycle ... 19

Figure 16 - Timeout Check Cycle ... 19

Figure 17 - Dashboard graphs ... 20

Figure 18 - Modem Boot Statistics ... 22

Figure 19 - Keypad Matrix ... 24

Figure 20 - Oscilloscope Measurement of Keypad Signals 24

Figure 21 - Relay Implementation .. 25

Figure 22 - Opto-Coupler Matrix .. 26

Figure 23 - Token Write Gadget ... 27

Figure 24 - Digilent Pmod RS-232 .. 28

Figure 25 - LED Sensor Test Unit .. 29

Figure 26 - SMART Test Unit Graph ... 30

Figure 27 - Meter Interface Port ... 31

Figure 28 - Opto-Coupler Isolation ... 32

Figure 29 - Opto-Coupler Isolation Null-Modem ... 33

Figure 30 - Screenshot of Null Modem Test .. 34

Figure 31 - Desired Control and Status Register Setup 35

Figure 32 - Identification Message [23] ... 35

Figure 33 - Identification Response [23] ... 36

Figure 34 - Data Read Message [23] ... 36

Figure 35 - Data Write Message [23] .. 37

Figure 36 - Meter Communication Protocol Flow [23] 38

Table 1 – STS token examples [24] ... 4

Table 2 – Resistive divider specification .. 12

Table 3 - LDR values and results ... 12

Table 4 - AT Commands given to modem [8], [20] 16

Table 5 - Modem Response Messages [8], [20] .. 17

IX

Table 6 - Modem Setup Dialogue ... 18

Table 7 - Pin-to-Key Relationships ... 26

Table 8 - Test Unit Results ... 30

Table 9 - Meter Interface Port Pinout .. 31

Table 10 - Meter Serial Communication Specification [23] 34

Table 11 - Control and Status Register Description 35

Table 12 - Identification Message Character Description [23] 36

Table 13 - Identification Message Character Description [23] 36

Table 14 - Data Read Message Character Description [23] 37

1

1. Introduction

1.1 Project Background
The current electricity situation in our country is of some concern [1]. This is
due to a high demand for electricity in the country and limited investment in

generation infrastructure. Effective analysis and management of electricity in
South Africa thus becomes an essential aspect in supplying the nation with
enough electricity to meet its demand. One aspect of data that needs to thus

be managed is that of electricity usage by the public.

Prepaid electricity is a popular solution that is widely used in South Africa.
The effective gathering and analysis of data surrounding prepaid electricity
usage will provide distributors to more effectively manage distribution. A

system that allows for such data gathering and analysis would need to be
installed on individual prepaid units to gather data from them. The data
gathered would then need to be presented in user friendly way to facilitate

analysis. The data would also need to be remotely accessible.

Remote control of prepaid meters will also be beneficial to electricity
distributors and consumers. Prepaid electricity meters can receive tokens
entered via a keypad to carry out certain instructions in the meter.

Currently, if a prepaid electricity user wants to load credit onto a prepaid
meter, it is required that the user purchases a token from a distribution

point or the internet, and then physically enters the token into the meter via
the meter‟s keypad. Being able to enter these tokens remotely will be
beneficial to users and will be a more convenient solution to this problem.

1.2 Literature Study
Research has been done into the remote control of prepaid meters. It was

suggested that mobile communication be used to load credit to prepaid
meters remotely. The meter would contain a prepaid card analogous to a
mobile phone SIM card. The meter would then behave like a prepaid mobile

phone, with credit being uploaded remotely and the electricity supply being
cut once credit had run out. [2]

There are also products available on the market that allows clients to read
information concerning electricity consumption from their meters. These

product offer real time monitoring of electricity usage for users and also
stores information concerning electricity usage that can be analysed by the
user. These products help users to make more informed decisions

concerning electricity usage. One such specific product is available from
SEM. This product is installed onto a meter and uses a secure internet
connection and allows a user to monitor a meter remotely. [3]

There are also products available that monitor a meter‟s electricity usage in

real time and display it to a mobile device. One of these products is known
as OWL, and it clips around the load or supply side cable running into or out
of the electricity meter and monitors how much electricity is being used. It

then transmits this data to a wireless, handheld device [4].

2

It is currently possible to purchase prepaid electricity vouchers via mobile
phone. Once the voucher is purchased though, the credit token must still be

entered to the meter physically at the site where the meter is located. Thus
the purchasing of credit tokens can be done remotely, but the entering of the
tokens must be done manually [5].

1.3 Aim
The project aims to gather usage data from a prepaid meter and to send

instructions too it remotely. The instructions to be sent will be in the form of
STS tokens [23], a software based identity provider. These are written to the
meter to load credit onto it or to carry out other commands, for example, to

trip the disconnecting device of the meter. The data to be gathered from the
meter will be its electricity consumption. This data then needs to be

displayed in an easy to understand and monitor way on the Internet.

1.3.1 Requirements

Trintel gave some requirements that the project had to adhere to. The first
was that their online SMART platform was to be used to display the data

read in from the meter. This platform is an online, interactive platform that
will be discussed in detail later in the report (Chapter 2.1.2).

Trintel also supplied the meter and modem to be used. The meter model is
the Itron ACE9000 Taurus ISP prepaid meter and the modem model is the
Sierra Wireless Airlink GL6100. These components will also be discussed in

more detail in a later chapter (Chapters 2.1.1 and 2.1.3 respectively).

1.3.2 Objectives

The following objectives are to be met in this project.

 Communicate with the meter.

 Communicate with the Trintel SMART platform via a modem.

 Continuously send data gathered from the meter to the Trintel SMART

platform via the modem.

 Send instructions to the meter from the Trintel SMART platform via

the modem.

 Be able to enter STS tokens into the meter from the Trintel SMART

platform via the modem.

1.4 Approach
Originally, the desired approach to be followed was to communicate with the
meter using a serial connection, which is used during assembly. This was
not possible, as the specification that was provided for the meter was

inaccurate. The work done until this was discovered and the reason why this
route could not be followed will be discussed in a later chapter (Chapter 4).

A microprocessor is used to control the flow of data between the meter and
the modem. A LED sensor is used to gather data concerning electricity usage

from the meter. This form of electricity data gathering from a meter is not
often used. The microprocessor also writes tokens to the meter by emulating
key presses on the meter‟s keypad using a relay matrix. The relay matrix is

necessary as the meter‟s ground floats at 230VAC. Thus, if it were connected

3

directly to a normally grounded device, the electronics would encounter
problems. Finally, the microprocessor communicates with the modem

through an RS-232 converter to give messages the correct voltage levels.
These hardware components will be explained in greater detail in the
following chapters.

Data is sent from the modem to the online Trintel SMART platform, which
enables the effective displaying of data sent to the modem. The tokens that

are to be written to the meter is sent from the online SMART platform to the
meter via the modem and microprocessor.

Figure 1 - System Diagram

A demonstration video for the project can be found at http://youtu.be/uH-

bfwv4Dxo

2. System Layout

2.1 Key Components
There are a few components that are keys to this project and deserve further
explanation here. These components are both hardware and software
components and are listed below:

 Itron ACE9000 Taurus ISP Prepaid Meter

 Trintel Online SMART Platform

 Sierra Wireless Airlink GL6100 Modem

2.1.1 Itron ACE9000 Taurus ISP Electricity meter

The Itron ACE9000 Taurus is a single phase, one-way prepayment meter
developed by Itron Incorporated [6]. It monitors the electricity use of a given

house / electricity using point and is loaded with credit to allow control of
the amount of electricity used by the point. Credit is loaded via tokens that
can be purchased easily by the public.

http://youtu.be/uH-bfwv4Dxo
http://youtu.be/uH-bfwv4Dxo

4

Tokens are loaded onto the meter via a keypad, located on the meter. The
keypad has buttons for digits 0 – 9, a Backspace button and an Enter

button. There are also Reset and Test buttons that cannot be pressed unless
the meter cover is removed. Tokens to be entered are of the STS standard
and consist of 20-digits each [23]. The 20-digit token is entered via the

keypad, and Enter is pressed to confirm token entry. The meter then either
accepts or rejects the entry.

An STS-Token can carry more information than just the uploading of credit
to the meter. Other instructions can also be given to the meter through the

use of STS tokens. Some of these are tabulated below. These tokens are not
meter-specific and can be used to perform the indicated commands on any
meter.

Description Token

Display Electricity Totals 00000000000201328896

Display Key Revision Number 18446744073843772416

Display Tariff Index 36893488147553322496

Display Power Limit 00000000001207974400

Display Tamper Status 00000000002281728512

Display Power Consumption 00000000004429208064

Display Version 00000000008724195840

Trip Disconnecting Device 00000000000150997584

Test Display 00000000000167774880

Initiate Dispenser Test 56493153725450313471

Display Phase Unbalance 00000000017314105857
Table 1 – STS token examples [24]

The meter has a LCD screen where data is displayed. The total credit
available is displayed by default, and is decremented as credit is used. On

the right hand side of the LCD screen there is a LED that flashes for every
watt-hour consumed by the meter i.e. it flashes 10 times for the number on

the LCD to be decremented by 0.01 (0.01 kWh is equal to 10 Wh). A picture
of the meter is included below.

Figure 2 - Itron ACE9000 Taurus ISP Prepaid Electricity Meter

5

The meter connects an electricity source (from ESKOM) and a load (typically
a house). It also contains a switching mechanism which allows for the

connection of the source and the load or disallows it. It was also found by
observation (measurement with a multi-meter) that the meter‟s logic‟s
ground (including the external serial port) floats at 230VAC. This means that

any logic signal in the meter has a 230VAC offset.

The meter was supplied by Trintel for the project.

2.1.2 Trintel Online Platform

Trintel offers a data processing and analysis solution online, known as the
SMART platform [7]. This platform works hand-in-hand with the Sierra

Wireless AirVantage tool [8], a tool that comes standard with Sierra Wireless
Airlink modems (the modem provided for use in this project by Trintel), and
allows a user to manipulate and present data variables, which have been

created using the AirVantage tool, in various ways. This data will typically be
data gathered from sensors monitoring various machines.

The platform as a whole consists of three separate platforms:

 The AirVantage Configuration Tool

 The AirVantage Operating Portal

 The SMART platform

(i) AirVantage configuration tool

The AirVantage configuration tool comes standard with a Sierra Wireless
Airlink modem and allows the user to create data variables, events,
commands, alarms and operating states that the modem will then recognize

and be able to change and send up to the online platform when prompted.
This is done by linking the AirVantage tool to the online AirVantage
operating portal and updating the portal using the AirVantage tool. Through

creating these data variables, an asset model is created, which can be
thought of as an object with its own data variables, commands, events,

alarms and operating states. Thus, data and commands are grouped into
assets that can be linked to a specific device (in our case a modem) [8]. A
diagrammatical representation of how this works is included below to help

with understanding.

6

Figure 3 - Modem Hierarchy Diagram

It is important to note that a modem can have multiple assets linked to it.

(ii) AirVantage Online portal

The AirVantage online operating portal is an online tool that is used to
monitor and manage devices (in the form of modems) and the assets (created

by the user) that are linked to these devices. The portal monitors data
variables contained in the modem and updates them as they change. It also
allows a user to send data and commands from the platform to the modem.

The data will then also be sent to devices that are serially connected to the
modem. Below is a screenshot of the portal where devices being monitored
are listed.

Figure 4 - AirVantage Portal device listing

Basic information such as which Asset model the devices use, what state the

devices are in etc. are listed. Device data can also be viewed from the portal.

Modem

Asset

Data and
Commands

7

Every modem has certain default variables that are permanently monitored.
The screenshot below shows these being monitored.

Figure 5 - AirVantage device data

As mentioned before, assets are created as objects containing data and

commands for devices. These assets are also monitored and managed via the
AirVantage portal.

Once again, basic information about these assets is included in this listing.
By selecting an asset and clicking on the “Commands…” button, users can
write commands to the device the asset is linked to, or can change the value

of data variables contained in the asset. Commands are used to send data in
the form of variables to devices. This data can either be a String, Integer,

Boolean, Binary or Double variable. Commands sent to the modem via the
AirVantage portal are in the form of unsolicited AT command messages.
These will be explained in more detail later (Chapter 2.2.3). Data variables

created for an asset can also be viewed on the portal and a screenshot of this
can be found below.

Figure 6 – AirVantage Asset data

8

(iii) The SMART platform

The SMART platform is an online tool by Trintel that allows a user to
manipulate and present data gathered on the AirVantage online portal
effectively. The SMART platform has a user-friendly interface that makes it

easy for users to work with their data and to display it conveniently. The
platform gathers data from the AirVantage portal and makes it ready to be
used in various available transform and display techniques.

Each asset has its own dashboard, which is a space provided to display all

data. Before data can be displayed, it must go through three stages of
preparation on the platform and these are explained graphically below.

Figure 7 - SMART platform data cycle

A screenshot example of a dashboard is included below:

Figure 8 - SMART dashboard

The SMART platform also includes a tool called Spyglass, which allows users
to monitor activity on devices in real-time.

Manipulation
This is where raw
data variables are
manipulated using
various transforms

(eg. sumation,
multiplication,

custom formulas etc.)

Gadgets
The data is then
converted into

"gadgets", which
are methods of
displaying the
data (eg. bar

graphs, on-off
switches, "LCD"

displays etc.)

Dashboard
Finally, the
gadgets are

arranged on a
dashboard - a

space provided for
displaying data on

a webpage.

9

2.1.3 Sierra Wireless Airlink GL6100 Modem

The Sierra Wireless Airlink series are data modems that bring cellular

connectivity to any device. They are designed specifically for M2M customers
and come with an embedded AT-command driven TCP/IP stack.

Communication to the modem is done on RS-232 standard levels (12V).

The modems also come packaged with the AirVantage Management Service,

a solution which allows for remote diagnosis and software upgrades to the
modem. This tool also allows the user to create data variables and
commands that the modem will recognise and that can then be used to send

data to online platforms and to receive instructions from them. [9]

The modem only needs to be sent ASCII data in the form of AT-commands.
These commands are then interpreted by the modem and sent as data to the
online platform. Data processing and display is then done on the platform.

The modem is powered via a wall-socket plug provided with the modem.

(i) The AT-Commands

Embedded cellular networks area mainly controlled by the use of AT

commands. The AT stands for Attention, referring to calling the modem to
attention as an instruction is being sent. The commands usually start with

“at”. AT commands are used to get data from, and send data to a modem. In
our case, we used only a few AT commands to perform our desired actions
[10]. These commands will be explained later in the report (Chapter 2.2.3

(iii)).

The modem was supplied by Trintel to be used in the project.

2.2 Solution Components
To reach the objectives of the project, the following had to be done:

 Continuously gather data about electricity consumption from the

meter.

 Display the gathered data on the SMART platform.

 Be able to write tokens to the meter.

The approaches followed to achieve these objectives are briefly described in
the Approach section (Chapter 1.3). The details of the hardware, software
and functionality used will now be further described.

2.2.1 The Microcontroller Board – Arduino Mega 2560

Arduino is an open-source electronics prototyping platform, founded by
Massimo Banzi and David Cuartielles. The project was initiated in 2005 in

Ivrea, Italy and was aimed at making a cheaper way for students to procure
prototyping systems. [11][12] Arduino now has a larger range of products
available from a variety of manufacturers.

The platform is built around the Wiring project, created as a master‟s thesis
project by Hernando Barragan [13]. It provides users with an easy-to-code

environment that allows for more user-friendly development and prototyping.

10

Arduino also has a large online-community that provides good support and
help for new developers.

The Arduino Mega 2560 microcontroller board was used as the
microcontroller for this project. Originally, the Arduino Uno microcontroller

board was to be used, but this was decided against as the Uno only has one
external serial UART. This means that we would not be able to communicate
with the modem and the meter simultaneously.

The Arduino Mega 2560 was chosen in place of the Uno, mainly because it

has 3 external serial ports, each with its own UART. The Mega uses the
ATmega2560 microcontroller and has 54 digital I/O pins and 16 analog
input pins [14]. The digital I/O pins can either be used as inputs or outputs.

When used as an output, the pin can either output 0V (logical LOW), or 5V
(logical HIGH). The analog input pins are used to monitor a voltage applied
to them that can vary between 0V and 5V.

The Arduino Mega 2560 can either be powered via a USB cable from a

computer (through which it can also be programmed), or from an external
12V source. The board also has pins that output 5V and 3.3V for used
outside the board, and 3 ground pins. The board also contains on it 256KB

of flash memory, 8KB of SRAM memory and 4KB of EEPROM memory. [14] A
picture of the Arduino Mega 2560 is included below:

Figure 9 – Arduino Mega 2560

(i) Programming the Arduino

Arduino has its own programming environment that works with the C
programming language. It also comes with a number of standard libraries to

help user to easily program their Arduino boards. This environment was
used in this project to program the Arduino Mega 2560 board. Connecting

the Arudino board to the PC was done via a USB cable that plugs into a USB
socket on the Arduino board. The board can then be programed directly from
the Arduino programming environment after the correct drivers for the

Arduino board have been installed on the PC.

(ii) Powering the Arduino

As previously mentioned, the Arduino board can be powered in one of two

ways. It can either be powered via a USB cable, which is also used for
programming the board, or via applying 7V-12V over the Vin pin and the
ground pin on the board. During the testing phase of the project, the

Arduino was powered using a USB cable. When the unit is deployed into the

11

field, the Vin port will be made use of. A voltage transformer that scales
down voltage from 230V AC to 12V DC is used to power the Arduino board

from a wall plug.

2.2.2 Gathering data from the meter – The LED Sensor

(i) Hardware

In this project, an LED sensor is used to extract data concerning electricity
usage from the meter. As mentioned earlier in the report, the meter has a
LED located to the right of the LCD screen, on the front of the meter. This

LED flashes for every watt-hour consumed by the meter. The LCD screen
displays available credit remaining on the meter by default. It displays the

credit in kilowatt-hours available, to the second decimal. Thus, for every ten
flashes of the LED (10 watt-hours consumed), the number displayed on the
LCD screen is decremented by 0.01.

To monitor the watt-hours consumed by the meter, a sensor is placed over
the LED and monitored. The sensor consists of a LDR (light detecting

resistor) connected in a voltage divider circuit, the output of which is
measured by an analog pin on the Arduino Mega 2560 board. A voltage

divider uses two resistors to give a desired (equal or lower) output voltage
from and input voltage. The output voltage is determined by the ratio of the
two resistors in the voltage divider. This concept is shown graphically below.

Figure 10 - Resistive Divider [15]

In our case, R1 is replaced by the LDR. When the LDR is exposed to light, its
resistive value decreases. The smaller R1‟s resistance is, the closer the ratio
of Vout to Vin gets to one, thus Vout becomes larger. In the project Vout is

connected to the A0 analog input pin on the Arduino Mega 2560 device. This
pin monitors a voltage that is applied to it. The voltage applied to it can vary

between 0V and 5V. The Arduino then converts the voltage read on pin A0 to
an integer. The higher the voltage on the pin is, the higher the value of the
integer will be. When 0V is applied to A0, an integer value of 0 will be read

on the pin. When 5V is applied to A0, an integer value of 1023 will be read
on the pin. The integer value will increase by 4.9 for every mV that the
applied voltage rises [16]. This creates a sensor by which it is possible to

know when the LED is on or off.

12

In our case, the following specification was used for the sensor (referring to
figure 11):

Symbol Value

R1 LDR

R2 1kΩ

Vin 4.9V (Supplied from Arduino board)

Vout
100mV when LDR exposed to light*
0V when LDR not exposed to light*

Table 2 – Resistive divider specification

*Found by experimentation

A voltage profile showing the output of the sensor when the LED is switched

on can be found below:

Figure 11 - LED Sensor Voltage Profile

By experimentation it was found that the value that was given by A0 is 0
when the LED is off, and about an average of 190 (varies around 190) when

the LED is on. Different resistors were tested on R2 before a 1kΩ was
chosen. The table below shows what integers were read on analog pin A0
with different resistor values for R2.

R2 Value A0 Value (LED off)
A0 Value (LED on)

(Average)

1kΩ 0 190

4.7kΩ 0 531

10kΩ 0 710

100kΩ 4 983
Table 3 - LDR values and results

A 1kΩ resistor was chosen for R2 because it gives a large enough range to
measure whether the LED is on or off accurately. It also has the lowest value

when the LED is on and thus is the simplest solution to use.

(ii) Software

The value read on A0 is interpreted to sense whether the LED is on or off.
When the value read on A0 becomes larger than 80, the LED is registered as

on. Only when the value on A0 then again drops below 80 does the sensor
register the LED as off. This means that when the value rises above 30 and
then again drops below 80, one LED flash is registered. This value is specific

13

to the meter provided for the project and will vary with different meters. This
is because the LED strength on a different meter may be stronger or weaker

than the LED on the meter provided. The software surrounding the sensor is
explained diagrammatically below.

z

Figure 12 - LED Sensor check

(iii) Possible Alternatives:

Some alternatives were considered for the LED sensor other than using a
LDR in a voltage divider. One possible alternative is the use of another LED

to detect whether the LED on the meter is on or off. The second LED (used
as sensor) is then connected in the same position as the LDR in our setup.

The setup then works in a similar way to ours, except the value of R2 will
differ. When the LED being monitored is switched on, a voltage is induced on
the sensor LED and this voltage can then be monitored to see if the LED

being watched is on or off. This route was not taken as it is more complex
than a single LDR sensor and I was more comfortable with using a LDR in a
voltage divider.

Another possible alternative was to measure the pulses that are sent by the

meter to the LED by measuring the line to the LED on the meter‟s interface
board. After inspecting the meter, it was concluded that I myself would not
be able to solder a wire onto the LED line as it required some soldering

expertise that exceeded my own. Also, using the line from the LED would
require isolation between the meter and the Arduino, which the LDR
approach avoided.

2.2.3 Communication with the SMART platform

(i) Serial Communication

Communication between the Arduino board and the modem happens
serially. The Arduino has a UART, which is used to receive and send data.

The UART transmits one bit at a time at a specified data, or baud, rate. In
our case this baud rate is 9600, and how the Arduino and modem was set

Check value on A0

every 30

milliseconds

Is value larger

than 80?

No

Register LED as

on.

Yes

Check value on A0

every 30

milliseconds

Is value smaller

than 80?

Register LED as

off, increment LED

counter

No

Yes

14

up to transmit at this rate will be explained later (Chapter 2.2.3 (iii)). The
Arduino‟s form of communication is referred to as TTL communication. In

TTL communication, the voltage levels used in communicating will always
remain between 0V and Vcc, which in our case is 5V. 0V represents a logic
low (0) and 5V represents a logic high (1).

The modem uses the RS-232 standard to send and receive data. Similarly to
the TTL standard, it transmits one bit at a time at a specified baud rate.

Parity (a check to see if data was correctly received) and the amount of stop
bits to be used can also be set on both standards. The only difference

between the standards is a hardware difference. The RS-232 standard uses
different voltage levels than the TTL standard. A logical high (1) is
represented by a negative voltage anywhere between -3V to -25V. A logical

low (0) is represented by a positive voltage anywhere from 3V to 25V. [17]

(ii) Hardware

The Sierra Wireless Airlink Gl6100 communicates using RS-232 levels [18].
The Arduino Mega 2560, however, communicates using TTL voltage levels

[14]. This means that for the Mega to communicate with the modem, the TTL
levels sent by the Mega must be converted to RS-232 levels and vice-versa.

This was done by the use of a MAX3322E [26] chip. This chip converts TTL
levels to RS-232 levels and vice-versa. The chip‟s datasheet clearly shows a
user how to use the chip and correctly connect a device to it [19]. This guide

was followed in the project to convert the signals to correct levels for use in
communication. A circuit diagram of the chip and the way it is connected

can be found below.

Figure 13 - MAX2233 chip implementation

15

(iii) Software

The software side of communicating with the SMART platform consists of a

couple of stages. A detailed explanation of how AT commands apply to the
modem will first be given.

a. AT Commands

As mentioned earlier in the report, AT commands are commands that are

used to control modems. The Sierra Wireless Airlink Gl6100 modem also
responds to AT commands. These commands prompt the modem to carry

out certain functions, such as to give information about itself or to change
settings on the modem. These commands are sent to the modem serially and
as ASCII characters. All commands are ended with a carriage return

character [8].

The modem will respond to commands sent to it. It can also serially send

messages to devices that are connected to it periodically or when
commanded to do so from the online portal.

A list of important commands that were used in the project and messages
that the modem responds with or sends as commanded from the online

portal follows.

AT Command Description

AT+IPR=<rate>

Sets the baud rate of the
modem. <rate> is replaced
with the desired baud rate,
such as 9600 or 115200.
When „0‟ is entered as the

rate, autobauding is
enabled.

AT+IFC=<DCM_by_DTM>,<DTM_by_DCE>

Enables or disables flow
control. Flow control is
disabled by setting both

parameters
(<DCE_by_DTM> and

<DTM_by_DCE>) to zero.

AT+AWTDA=d,”<asset_name>”,<nr.
Variables>,”<variable_name>,<variable_type>,<value>”

This is a command that
sends data through the

modem to the online portal.

<asset_name> is the name
of the asset the device is
linked to on the online

portal.
<nr. Variables> is the

number of variables you
will be sending data to

16

<variable_name> Is the
name of the variable you
would like to update with

the data
<variable_type> is the type

of the variable you are
updating. This will be one

of the following:
BOOL – Boolean

INT32 – A 32-bit integer
<value> this is the value

you are giving the variable.
*Note: more than one

variable can be updated in
a single command. Each
variable will then have its
own set of name, type and
value in inverted commas,

separated by a comma.

AT+AWTDA=c,”<asset_name>”,”<command_name”>

This command activates a
listener on the modem that

listens for commands
coming down from the
online portal. When a

command is received, it will
then be written out serially
by the modem in the form
of an unsolicited message.

AT+AWTDA=a,”<asset_name>”,<ticket_ID>

This command
acknowledges that a

certain command or data
sent from the modem has

been received. The ticket ID
is a unique number linked
with that job (command)
and is used to enable the
portal to know which job

has been completed.

AT

This is a command that
tests the connection to the

modem. The modem
returns “OK”.

AT&W

This command writes the
active modem configuration
into a non-volatile memory
on the modem (EEPROM).

Table 4 - AT Commands given to modem [8], [20]

17

Messages sent by modem:

Message Description

OK
Sent from the modem when a

command is correctly received.

ERROR
Sent from modem when a command

causes an error.

+AWTDA: UP

Sent periodically from the modem
(default every 60 seconds) to show that
the modem is up and running and the

connection is working properly.

+AWTDA: DN
Sent from the modem when the

modem is down, meaning it is not
functioning properly.

+AWTDA: BOOT

Sent from the modem when the
modem is booting up. This message is
only sent once every time the modem

boots to show that the modem is
booting.

+AWTDA: TIMEOUT

Sent from the modem when the
connection to the modem has timed

out. This means that there is
something wrong with the connection

to the modem.

+AWTDA:
c,<ticket_ID>,”<asset_name>",<command_
name>”,<variable_type>,<value>,CRC02

This message is sent from the modem
that is a command sent from the

online portal. Commands are used to
send data variables from the online
platform to devices connected to the

modem.
<ticket_ID> is a unique number

assigned for the job being performed
<asset_name> is the name of the asset

the device is linked to on the online
portal.

<command_name> is the name of the
command being performed

<variable_type> is the type of the
variable being sent down

<value> is the value of the variable
being sent

Table 5 - Modem Response Messages [8], [20]

(iv) Setting up communications:

To set up communication between the Arduino and the modem, both devices
must be set to the same baud rate and flow control must be off on the

modem. The settings set on the modem must then be saved as permanent.
In the project, the modem was connected to a laptop with a RS-232 to USB
connector and Terraterm (a terminal program) was used to communicate

with the modem initially.

The following commands are sent to the modem to set it up properly:

18

Sent from Terminal Modem Returns Description

AT OK Used to test connection

AT+IPR=0 OK Enable autobauding

AT+IFC=0,0 OK Disable flow control

AT&W OK
Save active modem

configuration
Table 6 - Modem Setup Dialogue

The following commands are used in the Arduino programming environment

to set up the serial ports to the correct baud rate.

Serial.begin(9600);

Serial1.begin(9600);

These two commands set up both the serial port that is used for

communication between the Arduino and a computer (when programming
and debugging), and the serial port used to communicate with the modem

(serial port 1) to a baud rate of 9600. After setting up both the Arduino and
the modem for serial communication, instruction and data can be sent
directly from the Arduino to the modem and vice-versa.

(v) Timers

For this project, a timer library was used to allow for the use of interrupts at

certain time intervals in the programming. The library is called Timer and is
an external library programmed for Arduino as the normal Arduino interface

does not have a library that allows for the easy use of timers. The library
allows for the following:

 Use of periodic timers (interrupt every X seconds) through a function
called every();

 Use of a delayed run of a function (run function after X seconds)
through a function called after();

(vi) Sending data to the online portal

For the project, and Asset named “meter” was created on the online portal.

This asset represents the prepaid electricity meter. A data variable (integer)
named Wh (Watt-hours) was created on this asset to monitor the amount of

electricity used by the meter per hour. This data variable is then then
updated with the value of watt-hours consumed by the meter every hour,
thus, a data writing command is sent from the Arduino (monitoring the LED

sensor) to the meter once every hour. The dialogue between the Arduino and
the modem when this variable is written is shown below:

Sent from Arduino: AT+AWTDA:
d,”meter.status”,1,”Wh,INT32,<value>”<CR>

Here, <CR> is the carriage return character. <value> is the

amount of flashes detected by the LED sensor is the last hour.

19

Response from Modem: OK

If the modem return OK, the data writing command has been

sent successfully.
 ERROR

If the modem return ERROR, the data has not been successfully

written and the Arduino will attempt to write the data again
after a few seconds (2 seconds to be exact). This will continue

until the data is successfully written.

This data writing cycles is described diagrammatically below.

Figure 14 - Data Writing Cycle

A check is also done after writing data to ensure that a response is received

from the modem. If no response is received after 5 seconds, the modem has

probably timed out, and another attempt will be made to write the data to

the modem.

Figure 15 - Timeout Check Cycle

The data that is written to the SMART platform (watt-hours consumed per
hour) is then displayed on a dashboard set up for the asset that represents
the meter. The data is displayed on the dashboard in the form of a line

60 minute timer

60 minutes past?

Write data to

SMART platform

Write

Successful?

Write data to

SMART platform

Wait 2

seconds

Yes Yes

No

Write data to

SMART platform
Wait 8 seconds

Response

received?

Continue as

normal

No Yes

20

graph. Another graph indicated how much is paid for the electricity
consumed. A screenshot of these graphs can be seen below.

Figure 16 - Dashboard graphs

(vii) Sending tokens from the online SMART platform to the

Arduino

A text box can be found on the asset dashboard on the SMART platform (see

Chapter 2.2.4 (iii)). This text box is used to send tokens that the user wishes
to enter into the meter. As mentioned in Chapter 2.1.1, tokens are 20 digit
numbers that are entered into the meter via a keypad on the meter. To send

a token from the SMART platform to the Arduino board, the following
procedure must be followed.

Firstly, a command is created for the meter asset that allows the user to
write a 20-digit string variable (the token) to the modem. The command is

aptly named “Write_Token”. A listener must be activated on the modem to
listen for this command when it is sent from the online platform. This
listener must be activated every time the modem boots. A timer was used in

the programming to activate this listener every 19 seconds. This amount of
time may seem random, but it was chosen to ensure that this command is

not sent at the same time as other commands that are sent periodically. The

21

following dialogue takes place between the Arduino and the modem when the
listener is activated.

Sent from Arduino: AT+AWTDA: c,”meter”,”Write_Token”

This command activates a listener for the “Write_Token”

command on the modem
Response from Modem: OK

If OK is returned by modem, listener has successfully been

activated.
 ERROR

If ERROR is returned by modem, something has gone wrong and
listener has not been successfully activated. The Arduino will
wait 2 seconds and then attempt to activate the listener again.

NOTE: A timeout check is again applied for this command.

To send a token from the online SMART platform to the Arduino, the token
to be sent is entered by the user into the text box on the asset dashboard on

the SMART platform. When “Submit Changes” is clicked by the user, the
Write_Token command containing the token entered by the user will be sent
to the modem as soon as the platform is sure that the modem is online and

working. The way the platform knows this, is by receiving a message from
the modem. This creates a problem, as the modem then needs to send a

message to the portal to receive a command from the portal.

To deal with this, a variable was created on the asset to be periodically

written every 11 seconds, to ensure that a command will be sent to the
modem from the portal a maximum of 11 seconds after the user issues it.
This variable is an integer and is named “writeAllow”. A timer is used to

write a value of 1 to this variable every 11 seconds, plainly for the purpose of
opening the path for any commands from the portal to come through to the

modem. The dialogue between the Arduino and the modem looks as follows
when this variable is written:

Sent from Arduino: AT+AWTDA:
d,”meter.status”,1,”writeAllow,INT32,1”

This allows an open path for commands to be sent from the

online portal to the modem.
Response from Modem: OK

The modem correctly received the instruction and writeAllow
was written with a value of 1.

 ERROR

The writeAllow variable was not correctly written. As this
command is periodically written every 11 seconds, nothing is

done when an ERROR is received from the modem.

When an open path has been created for a token to be written from the

online portal to the modem, the token will be written down contained within
a message. The token is a 20-digit string and is contained in a message from
the online portal that looks as follows:

22

+awtda: c,<ticket_ID>,”meter”,”Write_Token”,STR,<token>,<CRC_nr>

<ticket_ID> is a unique number assigned to each job.

<token> is the 20-digit token string

<CRC_nr> is a unique number

As can be seen from the message, asset and command names (meter and
Write_Token respectively) as well as what type of variable is being sent are
also indicated. The 20-digit token as well as the ticket ID is then extracted

from this message and saved in variables on the Arduino. The 20-digit token
is then immediately written to the meter through the relay matrix. This

process will be explained in detail later in this chapter (Chapter 2.2.4).

After the token has been successfully written to the meter, an acknowledge

message is sent to the modem from the Arduino to tell the online portal that
the job has been done. The acknowledge message looks as follows:

AT+AWTDA=a,<asset_name>,<ticket_ID>

The ticket ID is used to identify which job has been completed. When this
message has been successfully sent the online portal, it will be indicated on
the portal that the job has been completed. As before, if the acknowledge

message receives an ERROR message back from the modem, the Arduino
will attempt to write the message again to the modem after 2 seconds.

This process is continually run on the Arduino board. Through
experimentation it was discovered that the modem reboots quite often when

it idles. The following statistics were found when the modem was left to idle
for 3 hour 15 minutes:

UP counts 213

DN counts 20

Boot counts 10
Figure 17 - Modem Boot Statistics

If an attempt is made by the Arduino to write data to the modem while the

modem is booting, the modem will return an ERROR message. As explained,
code was written to work around this problem. When the modem boots, it
was found by observation that the following messages are sent from the

modem to the Arduino:

+AWTDA: DN

+AWTDA: DN

+AWTDA: BOOT

A check is put into the code to reactivate the command listener on the
Arduino (that listens for commands from the online portal) 2 seconds after
the +AWTDA: BOOT message is received. A writeAllow does not immediately

23

have to be sent to the modem as the modem will still write the command
once the next writeAllow variable, or data variable is sent up to it.

When a token is sent from the online portal to the modem, the modem sends
the token to the Arduino in a message as described previously. If the modem

boots while this message is being sent and it does not go through, it cannot
be recovered. The command message is lost and never reaches the Arduino.
It is not possible to program around this as the Arduino cannot inform the

online platform it has successfully received a command message because it
does not know when one is coming.

2.2.4 Writing Tokens to the Meter - The Relay Matrix

Instructions can be sent to the Itron ACE9000 Taurus prepaid meter via STS
tokens. As mentioned earlier, the STS token system is a system that allows
users to send instructions to prepaid meters by entering 20-digit tokens via

their keypads. A token is a 20-digit number. STS tokens can be divided into
three categories:

 Credit Tokens – For dispensing credit to an electricity meter.

 Meter specific engineering tokens – Tokens used to set power limit,

clear credit, change meter key, set tariff rate, clear tamper status, set
phase power limit.

 Non-meter specific engineering tokens – Tokens used to trip
disconnecting device, test display, display supply group code, display

electricity totals, display key revision number, display tariff index,
display power limit, display tamper status, display power

consumption, initiate dispenser test, display phase unbalance.

A list of non-meter specific engineering tokens can be found in Table 1.

To enter these tokens remotely into the prepaid meter, a relay matrix was
used to simulate key presses on the meter keypad. The relay matrix is then

controlled by the Arduino.

(i) Meter Keypad

The meter has on it a keypad with press-button keys. The keypad consists of

14 keys, 12 of which are press able by the user. The press able keys include
keys for digits 0 – 9, a backspace key and a enter key. The non-press able
keys are a test key and a reset key. The keypad consists of 8 lines, four

which are continually at 5V and four which are at 0.5V. These high and low
lines are connected via a matrix of switches to let the meter know that a key

on the keypad has been pressed. The diagram below explains the workings of
the keypad:

24

Figure 18 - Keypad Matrix

NOTE: For the meter, only 14 switches are used on the meter keypad as
there are only 14 keys.

Through observation it was seen that the signals on the high lines (5V) spike
down to 0V every 20ms (that is on 50Hz). Similarly, the low lines spike up to

5V every 20ms (also on 50Hz). When these two signals are compared using
an oscilloscope, the spikes overlap almost precisely. This can be seen in the
oscilloscope measurement below:

Figure 19 - Oscilloscope Measurement of Keypad Signals

When a button is pressed on the keypad, a high line and a low line are
connected and both are pulled to about 1.3V. This triggers a key press.

(ii) Hardware

A relay matrix is necessary for two reasons:

1. There needs to be isolation between then meter and the Arduino as the
meter ground floats at 230V and the Arduino ground is at 0V.

2. Relays act as switches that are used emulate key presses on the

meter‟s keypad.

The relay matrix consists of 12 HFD41 relays, with their coils being triggered

by digital output pins on the Arduino board. Each relay is used to switch two
meter keypad lines, one high line (5V) and one low line (0.5V). Therefore,

25

each relay connects two different lines on the keypad. The diagram below
shows how each relay is connected.

Figure 20 - Relay Implementation

For a full diagram of the relay matrix, please see the full circuit diagram in

Appendix E.
NOTE: Each relay element in the full system diagram is in Figure 21.

Each relay is used to control one key. The relay matrix functions properly in

emulating key presses when the meter is powered from a 5V source or from

a 230V source. Before a relay matrix was used as the solution to

programming tokens to the prepaid meter, an opto-coupler matrix was used.

This method was abandoned after being built and tested. The reason for this

was that when the meter was powered from a 230V source, the opto-coupler

matrix caused multiple key presses when trigger to press a key only once.

This occurred because the voltage which the high and low lines were pulled

to when connected through the opto-coupler rose and fell between 1V and

5V. Every time it passed a certain threshold, the meter would register a key

press, thus making it very unlikely to write a 20-digit token to the meter

successfully. After this method failed, relays were implanted and found to

work correctly. A diagram of how the opto-coupler matrix was implemented

can be found below.

26

Figure 21 - Opto-Coupler Matrix

Referring to Figure 21, each relay is driven by an Arduino digital output pin

using a 2n2222 transistor. This is done to act as a simple and effective

switch to switch the relay on and off. When the digital output is driven high,

the transistor is switched on and the relay is switched, connecting a high

line on the meter keypad to a low line, and emulating a key press. A diode is

connected across the relay coil to prevent back current from flowing into the

Arduino. The current that is fed the 2n2222 is:

The pin-to-key relationships for which Arduino pin is used to emulate which

key press is tabulated below:

Ardunio Pin Meter Key

53 1

51 2

49 3

47 4

45 5

43 6

41 7

39 8

37 BACKSPACE

35 9

33 0

31 Enter
Table 7 - Pin-to-Key Relationships

27

One possible concern with using relays is that they break after a certain

number of switches. The HFD41 relays used in this project can switch a

maximum of 1x107 times [21]. Let us assume that a prepaid electricity user

enters two credit tokens into his / her meter per months. Let us also assume

that every key on the meter is pressed twice during a token entry. That

means that every key is pressed four times a month. For a relay to switch a

key 1x107 times, that would then take 2500000 months or 208333 years.

Thus, it can be concluded that relay switching maximums will not be a

problem in this project.

(iii) Software

As mentioned in section 2.2.3, tokens can be sent from the online SMART
platform to the modem by using a textbox located on the SMART platform

dashboard. A screenshot of the textbox can be found below.

Figure 22 - Token Write Gadget

A 20-digit token is entered into this gadget and the “Submit changes” button
on the dashboard is then clicked. Trintel made this gadget for specific use in

this project.

When a token is sent from the online platform to the modem, it is done via a

message of the following format:

+awtda: c,<ticket_ID>,”meter”,”Write_Token”,STR,<token>,<CRC_nr>

<ticket_ID> is a unique number assigned to each job.

<token> is the 20-digit token string

<CRC_nr> is a unique number

When this message is received and sent from the modem to the Arduino, the

token and ticket ID are extracted from the message and saved in two string
variables. The string variable that the token is saved in is then used to write

the token to the meter. This is done by driving the pin connected to the
desired key to be pressed, high. Pin-key relationships can be seen in Table 7.

2.2.5 Full System Diagram

A full system diagram is included in Appendix E.

28

3. Test Unit and Results
A test unit was created to measure, over a period of two weeks, how well the
LED sensor and data uploading to the SMART platform works. The data

gathered by the test unit was uploaded to the SMART platform and displayed
in the form of graphs.

(i) Hardware

The test unit consists of a LED sensor and a Sierra Wireless Airlink GL6100

modem connected to an Arduino Uno development board. Data was gathered
from the LED sensor by the Arduino Uno and then sent in the form of AT

commands to the modem, which in turn uploaded it to the online platform.

The LED sensor is similar to the LED sensor previously discussed in this

report in Chapter 2.2.2. Serial communication with the modem was also
performed in the same way as previously discussed in Chapter 2.2.3 of this
report. One significant difference in the software of the LED sensor on the

Arduino, is that the value at which the LED was registered as “on”, had to be
lowered to a reading of 5 on the analog pin A0. The reason why the reading

on the pin is so low is unclear, but the LED on the test meter (Conlog type) is
probably of less intensity than the LED on the meter provided by Trintel.
When the LED was tested to establish the value read on the analog pin, the

Rate pin on the meter interface port (see Figure 27, Table 9) was grounded to
switch the LED on. This could switch the LED on at a higher intensity than
usual.

As mentioned, the Arduino Uno board was used for the test unit. This board

is smaller than the Arduino Mega 2560 and has less pins and memory. It
also has only one serial port, which was used to communicate with the
Sierra Wireless modem. The board has six analog input pins, of which one

was used to measure the LED sensor reading. The board was powered via its
USB port.

Serial communication between the Arduino and the modem took place in
much the same fashion as it did between the Arduino Mega 2560 and the

modem. The hardware used to do the conversion from TTL levels to RS-232
levels was, however, different. The Digilent Pmod RS-232 chip was used to
do this conversion. The chip is shown below:

Figure 23 - Digilent Pmod RS-232

29

This chip converts TTL levels to RS-232 levels for serial communication. A
full circuit diagram of the test unit is included below:

Figure 24 - LED Sensor Test Unit

(ii) Software

The test unit was setup to monitor the test prepaid electricity meter for a
period accumulating to about one and a half weeks. The unit sent data to

the SMART platform once every hour indicating how many watt-hours had
been consumed by the meter during the previous hour. The data was then
displayed on the SMART platform in a line graph. After a few days, it was

noted that the unit missed about one reading every day (did not sent it to the
SMART platform). This was probably due to there being no error-checking

code on the unit for checking whether data was successfully written to the
SMART platform. The code on the unit was changed to include error-
checking and installed on the unit.

3.1 Results
Some results from the test are given below:

Device Date and Time Reading Delta (kWh)

Meter LCD 21 Oct – 20:00 385.89kW

Meter LCD 21 Oct – 22:00 384.36kW 1.53

From this table it can be seen that a total of 1.53kW was used between

20:00 and 22:00 on 21 October.

Device Date and Time Reading Delta (kWh)

SMART platform 21 Oct – 20:59:17 1015Wh 1.015

SMART platform 21 Oct – 21:59:15 517Wh 1.532

From this table it can be seen that the LED sensor recorded a total of
1532Wh (1.53kW) being used between 20:00 and 22:00 on 21 October. This

matches up with what was recorded by the prepaid meter.

30

Below are some more results:

Device Date and Time Reading Delta (kWh)

Meter LCD 22 Oct – 7:00 380.35 5.54

Meter LCD 22 Oct – 8:00 378.56 7.33

Meter LCD 22 Oct – 9:00 377.99 7.90

Device Date and Time Reading Delta (kWh)

SMART platform 21 Oct – 22:59:11 219 1.751

SMART platform 21 Oct – 23:59:07 305 2.056

SMART platform 22 Oct – 00:59:04 246 2.302

SMART platform 22 Oct – 01:59:01 168 2.47

SMART platform 22 Oct – 02:58:57 240 2.71

SMART platform 22 Oct – 03:58:53 240 2.95

SMART platform 22 Oct – 04:58:51 492 3.442

SMART platform 22 Oct – 05:58:47 1186 4.628

SMART platform 22 Oct – 06:58:44 919 5.547

SMART platform 22 Oct - 07:58:41 1830 7.377

SMART platform 22 Oct – 08:58:37 525 7.902
Table 8 - Test Unit Results

From these results tables it can be seen that the LED sensor is tracking the
amount of watt-hours consumed very accurately.

The graph for the test-time is shown below. These graphs display watt-hours
consumed over time. NOTE: The test unit was not correctly set-up until 15

October.

Figure 25 - SMART Test Unit Graph

31

4. Dead Ends

4.1 Hardware for serial communication with the meter
During the course of the project, routes to communicating other than the

solution before-mentioned were attempted. Originally, it was planned to
communicate serially with the meter via the interface port found on the back
of the meter. A diagram of the interface port with its pinout description

follows:

Figure 26 - Meter Interface Port

Table 9 - Meter Interface Port Pinout

It can be seen from the description above that the interface port has 8 pins.
It was planned that the meter would be communicated with serially via the

Transmit and Receive port (port 2 and 3 respectively). The Arduino‟s serial
port 2 would be used for this communication with the meter. The

communication would have to, however, go through an isolation stage as the
meter‟s ground floats at 230VAC and the Arduino‟s ground is at 0V. If the
two devices were to be directly connected, the Arudino would be damaged.

It was decided that a 4n25 opto-coupler would be used to isolate the meter
from the Arduino. The data sent from the Arduino to the meter and from the

meter to the Arduino will thus be isolated. A diagram of the isolation stage is
included below:

32

Figure 27 - Opto-Coupler Isolation

As can be seen from the diagram, 2n2222 transistors are included as a pre-
stage for the opto-couplers. This is because the opto-coupler inverts any

signals that are sent through it. The output stage of the opto-couplers are
pulled up to 5V. On the Arduino side, this 5V is obtained from the 5V port
on the Arduino board. On the meter side, the 5V is obtained from the 5V

port on the interface port on the reverse side of the meter. When the LED of
the opto-coupler is switched on, the opto-coupler transistor is switched on,
and the opto-coupler output is pulled down to ground. This means that the

signal will come out inverted on the output side. The 2n2222 transistor thus
inverts the signal to be sent through the opto-coupler before it gets to the

opto-coupler. Thus it comes out the right way around at the output of the
opto-coupler.

The opto-coupler datasheet indicates that and ideal amount of current to
send through the opto-couplers is 10mA [22]. Even though the specification

supplied for the meter indicated that the 5V and 15V ports on the interface
port should be able to supply 60mA [23], by experimentation it was found
that when more than 10mA was drawn from the meter interface port, the

meter tripped and switched off the load. The meter could not even give more
than 10mA cumulatively over the 5V and 15V pins of the interface port.
Therefore, less current had to be drawn from it. By experimentation using a

bread board it was found that the 4n25 opto-coupler functions properly
when given 5mA through the diode. Thus, the isolation stage was designed

for 5mA to be given the opto-coupler diode to switch it on. The 2n2222
transistor does not need much current to switch it on, thus a 4.7kΩ resistor
is used at its base, which is also connected to a source that can deliver 5V.

The current through the 2n2222 is thus:

33

 A 1kΩ resistor is used to supply the opto-coupler diode with 5mA.

The output of the opto-coupler is then pulled up to 5V using a 4.7kΩ

resistor.

4.1.1 Testing the opto-couplers

To test whether the opto-couplers worked, a null-modem test was firstly

applied to the opto-coupler isolation stage. For this test, an input square-
wave signal with amplitude of 5V was applied to the input of one of the opto-
couplers and the output of the same opto-coupler was attached to the input

of the second opto-coupler. The output of the second opto-coupler was then
measured. A diagram of how this circuit looked is included below:

Figure 28 - Opto-Coupler Isolation Null-Modem

It was found that the output measured was similar to the input given with a
slightly longer rise time. A oscilloscope screenshot of this test can be found

below:

34

Figure 29 - Screenshot of Null Modem Test

The isolation between the meter and the Arduino was being tested when it

was discovered that this approach would not work. At the time, it was found
that isolation for logic signals from the Arduino to the meter worked, but the
isolation from the meter to the Arduino did not work as opto-couplers kept

on breaking when tested in this direction. This probably happened as a
result of a voltage spike when the meter is turned on. This means that the

say the 5V of the meter got to 235V (230VAC floating ground) before the
meter ground got to 230V.

4.2 Serial communication with the meter
According to the specification supplied for the meter by Trintel, the meter
can be communicated with serially to write data and commands to it and to

read data from it. The transmission specification for the meter is contained
in the following table:

Baud rate 2400 Bd

Start bits 1

Data bits 7

Parity Even

Stop bits 1

Transmission Type
Asynchronous serial transmission – half

duplex
Table 10 - Meter Serial Communication Specification [23]

The Receive and Transmit pins on the meter interface port is used to serially

communicate with the meter. To serially communicate with the meter, the
meter does not need to be plugged into a 230V source. 5V can be supplied to
the 5V pin on the interface port and the GND pin on the interface port can

be connected to ground. By doing this, the interface of the meter is switched
on without turning on the source or the load. This allows for serial

communication testing without having to isolate between the meter and the
Arduino, and this is how testing was done in the project.

The Arduino‟s serial port 2 was used to communicate serially with the meter.
The serial port had to be set up to the meter‟s transmission specification to
be able to communicate with the meter (see Table 10). The Arduino

35

programming interface does not have a default library to modify the serial
port to these standards; therefore registers in the ATmega2560 had to be

modified. The register to be modified is the Control and Status Register for
serial port 2, UCSR2C. This is an 8-bit register and a description of the
register bits are tabulated below.

Bit / s Name / s Description

7 and 6 UMSEL21 and UMPSEL20

Select the mode of
operation of the USART

(Synchronous /
Asynchronous)

5 and 4 UPM21 and UPM20
These bits enable and set

the type of parity
generation and check.

3 USBS2
This bit selects the

number of stop bits.

2 and 1 UCSZ21 and UCSZ20
These bits set the number

of data bits.

0 UCPOL2

Used to set clock polarity
(in synchronous mode

only, set to 0 in
asynchronous mode)

Table 11 - Control and Status Register Description

To setup the serial port up to the meter‟s transmission specification, the
register has to look like the following:

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 0 1 0 0 1 0 0
Figure 30 - Desired Control and Status Register Setup

The following code is used in the Arduino programming program to set the
register.

UCSR2C = UCSR2C | B00100100;
UCSR2C = UCSR2C & B00100101;

When the test setup had been done (5V to the 5V pin, Ground to the GND

pin, Arduino TX (Serial port 2) to the meter Receive pin and Arduino RX
(Serial port 2) to the meter Transmit pin), data was sent to the meter to test
whether communication works. The meter specification indicates that the

following message can serially be sent to the meter to test serial
communication:

Figure 31 - Identification Message [23]

The message is an identification request, requesting for the meter to

“identify” itself. A description of the characters contained in this message
and their functions are tabulated below (see Appendix D for full ASCII table):

36

Character Description Function

/ ASCII „/‟ Start character

? ASCII „?‟
Identification request

command

! ASCII „!‟ End character

CR ASCII carriage return Completion character

LF ASCII line feed Completion character
Table 12 - Identification Message Character Description [23]

The meter should then respond with a message in the following format:

Figure 32 - Identification Response [23]

A description of the characters contained in this message and their functions

are tabulated below:

Character Description Function

/ ASCII „/‟ Start character

M ASCII „M‟

Indicated that the
manufacturer details
follows in the next 6

characters

Xs 2-digit hexadecimal code Manufacturer code

Vs
4-decimal hexadecimal

code
Software version number

CR ASCII carriage return Completion character

LF ASCII line feed Completion character
Table 13 - Identification Message Character Description [23]

In the project, the identification message was sent to the meter. The
following dialogue between the meter and the Arduino took place:

Sent from Arduino:

/?!<CR><LF>
Response form meter:

/M011101

This shows that serial communication between the meter and the Arduino is
indeed possible. The next step in communication was to read and write data

from and to the meter serially. The meter specification indicates that to read
data from the meter, a message of the following form must be sent to it:

Figure 33 - Data Read Message [23]

37

To write data to the meter, a message of the following format should be sent.

Figure 34 - Data Write Message [23]

The characters contained in these messages and their functions are

tabulated below:

Character Description Function

SOH ASCII start of header Header character

R ASCII „R‟ Read command

W ASCII „W‟ Write command

STX ASCCI start of text Frame start character

ADDR 4-digit hexadecimal

Address field indicating
from which address data

must be read from or
written to.

DL 1-digit hexadecimal

Data length. Indicated
number of bytes to be

read from address
specified. Maximum data

length is 10 bytes.

ETX ASCII end of text Frame end character

BCC Block check character

Logical XOR of the
characters starting with

the first character
following the first SOH or

STX and up to and
including the ETX

character that terminates
the message frame.

(ASCII left parenthesis „(„ Open data block

) ASCII right parenthesis „)‟ Close data block

D Data

Data field representing
data to be written or read.
The maximum data length

is 10 bytes (20 digits in
hexadecimal format)

Table 14 - Data Read Message Character Description [23]

This message should allow a user to read from a specified address in the
virtual memory of the meter. The specification supplied by Trintel includes a
description of what the virtual memory of the meter should look like. This

layout can be found in the specification document [23] and is also included
in Appendix F. According to this layout, data containing the Total

Cumulative Units consumed is contained in the memory at virtual address
4019h (hexadecimal).

38

The specification document gives the following flow diagram to indicate how
communication flow should take place:

Figure 35 - Meter Communication Protocol Flow [23]

According to this diagram, in the project it had already been tested and
found that the identification request and response worked. The next step

was to send a Read or Write command to the meter. The following write
command was sent to the meter:

Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Bit 8 Bit 9
Bit
10

SOH W STX ADDR ADDR (D D D D

Bit

11

Bit

12

Bit

13

Bit

14

Bit

15

Bit

16

Bit

17

Bit

18

Bit

19

D D D D D D) ETX BCC

Where the D bits are data bits.

Hex:

Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Bit 8 Bit 9
Bit
10

0x01 0x57 0x02 0xff 0xff 0x28 0x01 0x01 0x01 0x01

Bit

11

Bit

12

Bit

13

Bit

14

Bit

15

Bit

16

Bit

17

Bit

18

Bit

19

0x01 0x01 0x01 0x01 0x01 0x01 0x29 0x03 0x029

(NOTE: The address is set to 0xFFFF when writing a token to the meter [23]).
When this command was sent to the meter, no response came back from the
meter. According to Figure 36, the meter should return a NAK character,

even if the message sent to the meter is incorrect. After quite a few attempts

39

to send a write message to the meter without response, it was concluded
that the specification provided is incorrect in accordance with this

command.

As the specification is incorrect, serial communication can be established

with the meter as tested, but the desired application of reading data from the
meter and writing data to it would not be possible serially. Thus, another
approach had to be found and followed, which is the point where the project

methodology changed to using the LED sensor and relay matrix to gain the
desired information from the meter and to write tokens to the meter.

40

5. Conclusion and Recommendation
This project aimed to monitor and control a prepaid meter. This was to be
done by gathering data from the prepaid meter and displaying it in an

effective manner that is accurate and easy to analyse, as well as controlling
the meter by being able to send it various instructions to perform.

The original approach was to do this by serially communicating with the
meter and doing most of the data gathering and sending digitally. This
approach could not be followed as the specification provided for the meter

was not accurate and after attempting to communicate with the meter, it
was found it would not be possible.

Alternative approaches were considered and it was chosen to use an LED
sensor to gather data concerning electricity usage of the meter from the

meter. This approach was implemented and tested and found to work
accurately and consistently.

A relay matrix was used to write STS tokens to the meter. These tokens allow
for control of the meter and the use of a relay matrix in partnership with a

microcontroller allows for remote control of the meter from the Internet.

This project benefits users in that it makes it possible to remotely monitor

and control a prepaid meter. This adds to the convenience in the use of
prepaid meters as it is not necessary to physically be at the position of the
meter to upload credit to the meter or to monitor credit available or

electricity usage of the meter. Monitoring of electricity usage can also be
beneficial in providing users and distributors with information that could

lead to electricity savings.

As a recommendation for future work, a proper specification for these

prepaid meters can be obtained and the meter can be communicated with
serially to gather data concerning electricity usage and the meter can also be
controlled serially.

Also, according to Vincent van der Clis, employee of Appframeworks, STS
tokens can be developed to allow for new instructions to be written to meters

through them. The only prerequisite is that meter firmware must be updated
to support this. This can be investigated as an option to exercise control over

a meter [25].

A demonstration video for the project can be found at: http://youtu.be/uH-

bfwv4Dxo

http://youtu.be/uH-bfwv4Dxo
http://youtu.be/uH-bfwv4Dxo

41

References

[1] NERSA, “NERSA Consultation Paper: Power Conservation Programme

(PCP) Rules”, Dec. 2008.

[2] A. Jain, M. Bagree. “A prepaid meter using mobile communication”

International Journal of Engineering, Science and Technology, vol. 3, pp. 160-

166, April 2011.

[3] SEM, “SEM‟s Automatic Meter Reading (AMR) System”, Internet:

http://www.semsolutions.co.za/automatic-metering.html, Oct. 2012.

[4] OWL, “OWL Wireless Energy Monitor”, Internet:

http://www.theowl.co.za/CM119_userguide.pdf, Oct. 2012.

[5] L. Kolver. “Prepaid electricity available instantly through sms”, Internet:

http://www.engineeringnews.co.za/article/prepaid-electricity-available-

instantly-via-sms-2009-07-10. Jul. 17, 2012.

[6] Itron, “ACE9000 Taurus ISP”, Internet:

https://www.itron.com/mxca/en/PublishedContent/F29988-4090-

ACE9000-ISP-SA_v5_LOW.pdf 2009.

[7] Trinity. “SMART Sense Telemetry Management Solution”, Internet:

http://www.trintel.co.za/telemetry_management.html. Oct. 2012.

[8] T. Pawley, M. Weiss, W. Hayes. “Trintel Training Session”, 3 October

2012.

[9] Sierra Wireless Inc. “Sierra Wireless AirLink™ Programmable Gateways

Fastrack Xtend and GL Series”, Available from:

http://www.sierrawireless.com/productsandservices/AirLink/Programmabl

e_Modems/GL6100_GL6110.aspx. 2010

[10] M. Ueland. “What Are AT Commands?”, Internet:

http://mobiledevdesign.com/tutorials/what-are-at-commands-070110/,

Jul. 1, 2010.

[11] P. Torrone (May 12, 2011). “Why Google Choosing Arduino Matters and

Is This the End of “Made for iPod” ™?”. Makezine.com. Retrieved Jan. 1,

2012.

[12] “Arduino Introduction page”, Internet: http://www.arduino.cc/, Oct. 12,

2012.

[13] Shiffman, Daniel (September 23, 2009). "Interview with Casey Reas and

Ben Fry". Rhizome.org.

http://www.semsolutions.co.za/automatic-metering.html
http://www.theowl.co.za/CM119_userguide.pdf
http://www.engineeringnews.co.za/article/prepaid-electricity-available-instantly-via-sms-2009-07-10
http://www.engineeringnews.co.za/article/prepaid-electricity-available-instantly-via-sms-2009-07-10
https://www.itron.com/mxca/en/PublishedContent/F29988-4090-ACE9000-ISP-SA_v5_LOW.pdf
https://www.itron.com/mxca/en/PublishedContent/F29988-4090-ACE9000-ISP-SA_v5_LOW.pdf
http://www.trintel.co.za/telemetry_management.html
http://www.sierrawireless.com/productsandservices/AirLink/Programmable_Modems/GL6100_GL6110.aspx
http://www.sierrawireless.com/productsandservices/AirLink/Programmable_Modems/GL6100_GL6110.aspx
http://mobiledevdesign.com/tutorials/what-are-at-commands-070110/
http://www.arduino.cc/
http://rhizome.org/editorial/2009/sep/23/interview-with-casey-reas-and-ben-fry/
http://rhizome.org/editorial/2009/sep/23/interview-with-casey-reas-and-ben-fry/

42

[14] “Arduino Mega 2560”, Internet:

http://arduino.cc/en/Main/ArduinoBoardMega2560, Oct. 12, 2012.

[15] “Resistive_divider.png”, Internet:

http://upload.wikimedia.org/wikipedia/commons/d/db/Resistive_divider.p

ng . March. 9, 2008.

[16] “Arduino Analog Input Tutorial”, Internet:

http://arduino.cc/en/Tutorial/AnalogInput, Oct. 13, 2012.

[17] Jimbo. “RS-232 vs. TTL Serial Communication”, Internet:

http://www.sparkfun.com/tutorials/215. Nov. 23, 2010.

[18] Sierra Wireless. “GL61x0 Product Technical Specification and User
Guide”, Nov. 30, 2010. pp. 33.

[19] Maxim Integrated Products. “Typical Operating Circuit”, in MAX3322E-

MAX3323E, Rev. 1, Jan. 2003.

[20] Sierra Wireless. “AT Commands Interface Guide for Firmware 7.46”,

Aug. 2, 2011.

[21] Hongfa Relay, “HFD41/D41A”, Rev. 1. 2008.

[22] Isocom Components. “Optically Coupled Isolator Phototransistor

Output”, Jul. 30, 1997.

[23] J. O‟Kennedy. “Particular Requirements for Prepayment Meters”. Rev. 2.

Aug. 2008.

[24] R. De Kock. “Prepaid meter Skripsie”, Personal e-mail (12 July 2012).

[25] V. van der Vlis. “RE: Tokens”, Personal e-mail (11 October 2012).

[26] Maxim Integrated Products. “MAX3322E-MAX3323E, Rev. 1, Jan. 2003.

http://arduino.cc/en/Main/ArduinoBoardMega2560
http://upload.wikimedia.org/wikipedia/commons/d/db/Resistive_divider.png
http://upload.wikimedia.org/wikipedia/commons/d/db/Resistive_divider.png
http://arduino.cc/en/Tutorial/AnalogInput
http://www.sparkfun.com/tutorials/215

43

Appendix A: Planning Schedule

Week Plan Work Done

1 (Week of 19 July 2012)
Read and understand

meter specification
Study of meter
specification

2 (Starting Monday 23
July 2012)

Read and understand
meter specification and

plan how to communicate

Study of meter
specification, and tested
to find meter does not

work.

3

Get meter up and running
and understand meter

interface. Purchase
microcontroller. Trintel

training.

New meter obtained that
worked. Purchased

microcontroller. Attending

Trintel training.

4 Test Week Test Week

5
Understand

microcontroller and C
programming.

Understood and did
modem communication

and basic SMART
platform operations.

6

Do isolation between
meter and microcontroller.
Understand modem and

protocol

Decided on opto-couplers
for isolation. Obtained

opto-couplers.

7
Get microcontroller to

communicate with meter
and modem.

Tested opto-couplers.
Obtained MAX2323 chip

for communication
between modem and

microcontroller. Read and
understood MAX232

datasheet.

8
Capability to write

information to meter and
read data from meter.

Isolation problems
encountered. Continual

opto-coupler testing.

9
Capability to write

information to meter and

read data from meter.

Found out meter
specification is wrong.

Planned new, more
mechanical approach to

gather data from the
meter and control the

meter.

10

Program the software
system for the

microcontroller to
effectively gather and

analyse data, and control
the meter.

Built LED meter for
gathering data and

programmed software.

11
Understand and setup

Trintel platform

Built opto-coupler matrix
for entering tokens via

meter keypad.

12 Field Testing
Tested opto-coupler
matrix, found faulty.

13 Tie up loose ends
Obtained relays and build

relay matrix to control
meter keypad.

44

14 Tie up loose ends Tested relay matrix.

15 Tie up loose ends
Wrote Report and field

testing.

16 Write Report Wrote report

17 Write Report Exams

45

Appendix B: Project Specification

The specification for this project is to develop a web-based interface for the

monitoring and control of a prepaid electricity meter.

The specification required that the meter must be communicated with. Data

concerning electricity usage must be gathered from the meter and a user

must be able to send instructions to the meter. The data gathered must then

be displayed on Trinity‟s online SMART platform in a user friendly manner. A

user must also be able to send instructions to the meter from this same

SMART platform.

A modem was supplied by Trintel for this project. This modem must be used

to facilitate communication between the meter and the online SMART

platform. The meter to be in the project was also supplied by trintel.

An Arduino microcontroller was used to control the system. Data is gathered

from the meter using an LED sensor to record how many watt-hours the

meter consumed. This sensor is monitored by the microcontroller, which

records how many watt-hours are consumed by the meter. Instructions are

sent to the meter in the form of STS tokens, which are usually entered into

the meter via the meter keypad. These tokens are written to the meter using

the microcontroller and a relay matrix. The relay matrix is used to emulate

key presses on the meter keypad.

A centralised point in created online where data gathered from the meter can

be viewed and tokens can be written to the meter.

46

Appendix C: Outcomes Compliance

Problem Solving:

 Changing the solution approach when it was found meter specification

was inaccurate (Chapter 4, Chapter 2.2.2 and 2.2.4)

 The approach to gathering data from the meter (Chapter 2.2.2)

 The approach to writing tokens to the meter (Chapter 2.2.4)

 Design of error checking software that ensures data is correctly sent to

the modem (Chapter 2.2.3)

Application of scientific and engineering knowledge:

 The LED sensor. Design of an effective sensor. (Chapter 2.2.2)

 The relay matrix. Designing a working relay matrix to emulate key

presses on a keypad (Chapter 2.2.3 (ii))

 Risk of relays breaking because of maximum switching limit (Chapter

2.2.4)

 Interpretation of test results (Chapter 3)

Engineering design:

 Solution design (Chapter 1.4)

 LED voltage profile (Chapter 2.2.2. (i))

 Choosing between opto-couplers and relays for writing tokens to the

meter (Chapter 2.2.4).

Investigations, experiments and data analysis:

 Choice of microcontroller to use (Chapter 2.2.1)

 LED sensor field testing and analyses (Chapter 3)

 Literature study (Chapter 1.2)

 Conclusions about project (Chapter 5)

Engineering methods, skills and tools, including Information Technology:

 C programming for the solution system. This includes data handling,

string manipulation, error checking and a state machine (Chapter

2.2.3)

 Setting up of the online SMART platform for use of the project (Chapter

2.1.2)

47

Professional and technical communication:

 This report is a partial fulfilment of this requirement. It is a

communicating the project in a written form. An oral on the project

will also be presented.

Independent learning ability:

 Understanding and studying the prepaid meter provided. Also,

drawing conclusions from this study (Chapter 2.1.1, Chapter 4)

 Understanding and effectively using the modem provided (Chapter

2.1.3, Chapter 2.2.3)

 C programming for the system (Chapter 2.2.3)

 Understanding of various components and using them in the solution

components of the system (Chapter 2.2.2, Chapter 2.2.3, Chapter 2.2.4,

Chapter 4)

 Understanding and effectively using the online SMART platform

(Chapter 2.1.2, Chapter 2.2.3)

48

Appendix D: ASCII Table

49

Appendix E: Full System Diagram

Relay Matrix

LED Sensor
Arduino Mega 2560

MAX3322 Chip

DB9 Connector

Meter keypad

high lines

Meter keypad

low lines

50

Appendix F: Meter Virtual Memory Configuration

51

52

